

Terrestrial Environmental Observatories Conference Bonn, Germany September 29 – October 2, 2014

A Physically-Based Modelling Approach to Assess the Impact of Climate Change on Surface and Groundwater Resources within the Grand River Watershed, Ontario, Canada

E. A. Sudicky¹, S.K. Frey², H.-T. Hwang² and Y.-J. Park²

¹Department of Earth & Environmental Sciences University of Waterloo Waterloo, Ontario, Canada N2L 3G1

> ²Aquanty, Inc. 564 Weber St. N., Unit 12 Waterloo, Ontario, Canada N2L 5C6

Need for a Community Model Inter-Comparison: Complexity *versus* Simplicity

- Many models some comprehensive, some less so
- Some physics-based (i.e., coupled PDE's), some "lumped"
- Some structured, some "cobbled" together
- Some flexible, some "rigid"
- Disparate data needs
- Avoid "model wars"

A community model inter-comparison...

- Could use well-characterized data-rich watersheds as a platform
- Include models ranging from comprehensive (complex?) to simple (parsimonious?)
- Water quantity, water quality
- Not a competition to define winners and losers
- Serves the entire hydrologic community (scientific, consulting, government, regulatory, policy sectors)

HGS T

 Fully-coupled 3D model based on PDEs to capture interactions between surface and subsurface water flow, solute and energy transport

 Can be "simplified" to consider only individual water cycle components

Examples of Coupled Surface-Subsurface

Earliest known coupled surface/subsurface flow model: Freeze, R.A. and R.L. Harlon, Blueprint for a physically-based, digitallysimulated hydrologic response model, *J. Hydrol.*, 9, 237-258, 1969.

Some Existing *"Integrated"* Models:

> InHm
> HydroGeoSphere
> MODHMS
> Parflow
> OpenGeoSys
> CATHY
> PIHM
> ...

Seems to be a growing area of model development, but do we need more models, or more applications centered on resolving key societal concerns & scientific questions ?

Overview of "HydroGeoSphere" Model Features

- 2D overland/stream flow (Diffusion-wave equation), including stream/surface drainage network genesis;
- 3D variably-saturated flow (Richards' equation + ET) in porous medium;
- 3D variably-saturated flow in macropores, fractures and karst conduits (dualporosity, dual-permeability or discrete fractures);
- Advective-dispersive, reactive solute/thermal transport in all continua, snow accumulation/melting, soil freeze/thaw;
- Groundwater age, life expectancy
- Allows for complex topography, irregular surface & subsurface properties, density-dependent flow, subgridding & subtiming
- Fully-coupled, simultaneous solution of surface/subsurface flow and transport via Control-Volume Finite Element or Finite Difference Methods.

Grand River Watershed Background

- 7000 km²
- Population of ~900,000
- Intensive Agriculture
 - 93% rural/agricultural land use
 - 290,000 head of cattle
 - 500,000 thousand swine
 - 8.8 million poultry
- 900 mm of precipitation/year
- Heavy Dependence on Groundwater
 for Municipal Water Supply
- Well Instrumented
- Long Term Records

Location Within Great Lakes Basin

Drilling and Water Well Records

Extensively Characterized

Well Defined Soil Type Distributions

Water Budget Parameter	Value (mm/year)
Precipitation	930
Evapotranspiration	605
Surface Flow Out of GRW	313.5
Infiltration	465
Exfiltration	170
Recharge	186
Groundwater Flow Out of GRW	0
Groundwater Pumping	11.5

Smart Watershed Monitoring

Making the Grand River Watershed "Smarter"

Why the Grand River?

Why the Grand River? It's an urbanizing watershed with a unique mix of pristine, urbanizing, urban and agricultural land uses making it a perfect place for research and development. In collaboration with IBM, the Southern Ontario Water Consortium has built a system that allows them to collect, store and analyze data from sensors in the Grand River Watershed in Southern Ontario.

- Laubhrfull Bala also

Grand River Facts

The Grand River is the largest inland river system in southern Ontario supplying water to the Region of Waterloo, Brantford and Six Nations.

The Grand River comprises

of the Canadian land area draining into Lake Erie and is approximately

300km

long with 750,000 people living within its watershed.

Platform Facts

The platform analyzes data collected every 15 minutes from meteorological, surface, subsurface and groundwater sensors, which monitor everything from rain- and snowfall, soil moisture, water turbidity, flow rates, temperature, to ground- and well-water quality.

600 data points per hour

streaming from more than

120

installed within 80 square kilometers of watershed that nourishes urban, agriculture and forested land along the Grand River.

Dynamical Downscaling of Climate: CESM & WRF

Background – Climate Projections

Initial conditions and uncertainty

A conceptual model of climate projection: all trajectories begin in a reasonably well defined initial state, they then spread and decorrelate with time to arrive at a random location within a new but equally well defined distribution Climate is essentially the statistical average of the weather in a particular region over a particular time window.

 Climate change is a shift in these statistical characteristics with time

Even though we cannot predict individual weather events we can predict (project) changes in the nature of their statistical distribution

Observation vs. WRF vs. Future (2045-2054)

Observed vs. Simulated Precipitation

Monthly averaged liquid and solid precipitation (1979~94)

HydroGeoSphere FEM Development

Observed vs. Simulated Surface Drainage Network

Observed Drainage Network

Simulated Surface Water Depth

Subsurface Saturation and Depth to GW Table Distributions

Evapotranspiration and Exchange Flux Distributions

Evapo-Transpiration Flux

Surface-Subsurface Exchange Flux

Observed vs. Simulated: Stream Flow and GW Head

Observed vs. Simulated Stream Flow

Observed vs. Simulated GW Head

Historic Transient Simulations

Observed vs. Simulated Stream Flow

Next Step: Cover Ontario's Watersheds

Integrated Models: Our Lessons from Experience

- Integrated models showing promise in characterizing hydrologic cycle processes at multiple scales in watersheds.
- Parameterization: There is always "missing" data.
- Computational challenges remain, but with modern numerical solution methods, parallel computing & HPC's, there is optimism for handling very large complex systems.
- Fully integrated solution is robust and provides a holistic view of water, contaminant & heat transport .

