

Real Thermal Inertia for Soil Moisture Estimation in Agricultural Areas using Airborne Remote Sensing

Daniel Spengler¹, Andreas Steinberg¹, Christian Hohmann¹, Friedhelm Schwonke² & Sibylle Itzerott¹

¹Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences ²Federal Institute for Geosciences and Natural Resources - BGR

Quantification Methods of Soil Moisture

ASSOCIATION

Thermal inertia [P]

• Response of a material to temperature changes

Thermal inertia of soil cannot be measured by remote sensing techniques directly
 → models needed

Diurnal Temperature Variation versus Soil Moisture

Summary of results for the diurnal temperature variation versus soil moisture [Idso et al., 1975a].

Simple Approach of Apparent Thermal Inertia – ATI (*Price 1977*)

$$ATI = \frac{(1-A)}{(\Delta T)}$$

- A = Albedo
- ΔT = Temperature change during the caption of two thermal data sets

Limitation:

- No consideration of solar declination
- Overestimation of the influence of albedo
- Further effects not considered:

eg. wind, roughness, evapotranspiration of vegetation etc.

ATI model does not meet the requirements of precise soil moisture retrieval

→ Real Thermal Inertia

Outline

- ✤ Experimental Design

- ≁ Outlook

2013 Thermal Campaign

- TERENO-Northeastern German Lowland **Observatory / DEMMIN® Testsite** (Detailed Information – Poster Session on Tuesday)
- Multitemporal Experiment
 Installed by DLR Neustrelitz in 1999
 08.07.2013 5 PM
- ∧ Since 2009 cooperation in TERENO-NE (2907dia9ted by GFZAPStsdam) OStong OApansion 90 A Mstruments

09.07.2013 - 1 PM

- 40 agro-meteorologic stations in situ measurements of surface (20 DLR, 20 GFZ) temperature, soil temperature and soil moisture close to acquisition time
 62 soil moisture stations
 162 target points at different landuses

surce: Esri, DigitalGlobe, GeoEye, i-cu hics. CNES/Airbus DS, USDA, USGS, AEX, Getmapping.

Data

Marcin Wozny (BGR)

Thermal (BGR Hannover)

- Infratec VarioCam hr head 600
- Spatial Resolution: 640 x 480 Pixel
- Spectral coverage :
 7 14 μm

Hyperspectral (UFZ Leipzig)

- AISA Dual
- Spatial Resolution: 300 Pixel across track
- Spectral coverage :
 - $0.4-2.5\,\mu m$

AISA Eagle (VNIR) | AISA Hawk (SWIR)

Diurnal variation of surface Temperature

03:00 UTC

Diurnal variation of surface temperature

Multitemporal mosaic (3 UTC / 11 UTC / 18 UTC)

Differences of thermal inertia

- between crop types
- within fields

Potential reasons

Variations of internal factors

- plant density
- plant vitality
 - $(\rightarrow \text{ plant water content})$
- soil type
- soil moisture

Real Thermal Inertia 2 Times Model

Diffusion Equation with linearized boundary conditions solved with Fourier analysis assuming two coefficients of the series development are nearly equal

(after Carslaw and Jaeger, 1959)

PLSR results for winter barley (08./09.07.2013)

Winter barley

PLSR Results for sugar beet (08./09.07.2013)

Sugar beet

Discussion and Outlook

- ✤ Good results for areas with low vegetation cover (< 50%)</p>
- Actual no consideration of evapotranspiration

source: Sobrino et al. / Remote Sensing of Environment 117 (2012) 415-428

Outlook

- Integration of evapotranspiration needed for vegetation covered areas
- ✤ Refine algorithm for combination with hyperspectral data
- Combination with data of TERENO DEMMIN agro-meteorological and soil moisture network

Thank you for your attention

Contact: Dr. Daniel Spengler daniel.spengler@gfz-potsdam.de

