

TERENO Observatories – Validation Sites for a SAR-Based Soil Moisture **Retrieval under Vegetation Cover**

T. Jagdhuber, I. Hajnsek, K.P. Papathanassiou

In situ data from C. Montzka, H. Bogena, Ch. Chwala, H. Kunstmann, S. Itzerott, D. Spengler, U. Wollschläger, M. Pause

International TERENO Conference, September, 28 – October, 2, 2014, Bonn, Germany

TERENO Observatories – Ideal Validation Sites for a Remote-Sensing-Based Geo-Physical Parameter Retrieval

0 6 12 18 24 30 [vol.%] = Mask for forested + urban areas

SAR-Retrieved Soil Moisture under Vegetation @ Rollesbroich.

Soil Moisture Measurement Locations @ Rollesbroich.

In situ ground measurements enable a precise comparison and validation of the SAR-based soil moisture estimates.

Experimental FSAR Campaigns – TERENO 2011 - 2012 - 2013

→ DLR's Novel SAR Sensor: F-SAR

- → Frequency: L-band
- Fully polarimetric (HH/HV/VH/VV)
- Spatial Resolution (r/a):
 2m/4mx0.6m
- Date: KW 21-22, KW 19-21,
 KW16-18 (23.5.-7.6.2011, 10-23.5.2012,15.4.-2.5.2013)
- **TERENO Observatories**
 - → Bavarian Alps: Ammer KIT
 - → Harz: Bode UFZ/WESS
 - → Eifel: Rur FZ Jülich
 - ✓ NE Lowland: DEMMIN DLR/GFZ

Ground Measurements

- Conducted by the research institutes of the observatories.
- DLR supported for the Ammer and the Bode catchment in 2011.

Retrieval of Geo-Physical Parameters with Polarimetric SAR

- Polarimetric SAR (PolSAR) is sensitive to the geometry (size, shape, orientation, density) and the intrinsic properties (permittivity, salinity) of scatterers
- → Possibility to decompose into different elementary scattering mechanisms

Requirements for the retrieval algorithm

- High transferability to different areas of interest
- * Limited a priori knowledge / No in situ input data * Fully polarimetric L-band data
- Physically-Based inversion approach

Polarimetric Decompositions for Vegetation Removal and Soil Parameter Estimation

Removal of Vegetation Component and Inversion for Soil Parameters

Scheme of Iterative, Generalized, Polarimetric Hybrid Decomposition and Inversion for Soil Moisture

Physical

Constraining of

Vegetation Volume

Component

Using

a Generalized

Volume

Using Vegetation Types

from 1. Iteration as

Input in a Generalized Volume for 2. Iteration **Start of 1. Iteration**

Physical Constraining of Volume Intensity Component Using a Random Volume

Generalized Polarimetric Hybrid Decomposition for a Variety of Different Vegetation Volume Types (Shapes, Orientations)

Soil Moisture Estimation

End of 2. Iteration

Determination of Corresponding Vegetation Volume

6

Harz Observatory @ Schäfertal Catchment

Flight strips of F-SAR: 11 x 4 km (E-W), 6 x 4km (N-S) Field measurements by UFZ/WESS: Soil moisture, Vegetation (height, phenology, biomass)

First Pattern Comparisons between Pol-SAR-Derived and SoilNet-Measured and Interpolated Moisture @ Rollesbroich

PolSAR-Derived Soil Moisture *mv*_{SAR}

Measured and Interpolated Soil Moisture mv_{situ}

15

14

13

3xsmooth (31 x 61 pixel)

Interpolation of mv_{situ} is done with a multiply applied local smooth window (M x N pixel)

15

9

3

-3

-9

Moisture Difference = $mv_{SAR} - mv_{situ}$

Bavarian Alps Observatory @ Fendt / Ammer Catchment Flight strips of F-SAR: 14 x 4 km

Field measurements by KIT: Soil moisture, vegetation (height

Estimated Soil Moisture

Geocoded and Mosaicked Soil Moisture for TERENO 2013 Campaign on 25/04/13 @ Eifel Observatory

 θ_{fusion} : Fused active-passive soil moisture product
 $\theta_{passive}$: Radiometer soil moisture product
 ρ_{active}

Geilenkirchen

θ_{active}: SAR soil moisture productβ: Scaling parameter

Contraction and the second

Validation of Soil Moisture Inversion under Vegetation Cover@ L-BandF-SAR 2011-2013 Campaigns

Summary and Outlook

- Inversion of soil moisture for variously vegetated TERENO observatories is feasible with very high inversion rates (>96%) using decomposition and inversion techniques on fully polarimetric SAR data @ L-band.
 - High-resolution (compared to passive sensors) and wide area (compared to field-based techniques) mapping is possible.
 - → Monitoring period covers the entire growing season.
- Validation with ground-based sensors (thermogravic probes, FDR, TDR, Wireless SoilNets) revealed a well agreement with the SAR-based moisture estimates resulting in an RMSE of lower than 5.5 vol.% including a variety of crop types in different phenological stages.
- → Further investigations on the retrieval algorithm towards operationality.
 - → Refinement of volume type selection
 - → Detailed spatial pattern analysis
- Fusion of active with passive microwave data for a combined soil moisture result in preparation of the SMAP mission.
- Algorithm implementation for upcoming, space-borne, long-wavelength SAR missions (ALOS-2, Tandem-L) heading towards a global monitoring strategy.

