

Spatial distribution of hydroxylamine and its role in aerobic N₂O formation in a Norway spruce forest soil

Shurong Liu, Daniel Weymann, Nina Gottselig, Inge Wiekenkamp, Harry Vereecken, Nicolas Brüggemann

Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany

>Introduction

- N₂O is a crucial greenhouse gas and its concentration has increased about 10% in the last 60 years.
- The estimation of soil N₂O emissions is highly uncertain due to the spatial heterogeneity (e.g. topography and tree species) even in a small region.
- The mechanisms responsible for N₂O emissions in forest ecosystems are still unclear. Denitrification vs. nitrification?

Denitrification and nitrification

Experimental site Wüstebach:

Materials and methods For hydroxylamine (HA):

(Liu et al. 2014)

*****For N₂O emissions:

Results and discussion

≻Nitrate or HA?

8

> Geostatistics

>Kriging maps

Stepwise multiple regression

 $N_2O \sim HA + NO_3^- + C + SWC + Mn + pH + P_{in} + Fe$ (R² = 0.60)

Covariates	Estimates	p value
Intercept	-1.2706	0.5218
HA	1.0351	<0.001***
NO ₃ -	0.5080	0.0015**
С	-1.1751	0.0111*
SWC	4.6722	0.0182*
Mn	0.2632	0.0237*
рН	-0.8586	0.0272*
P _{in}	0.8371	0.0546
Fe	-0.0006	0.1073

Conceptual model

Conclusions

- N₂O and hydroxylamine have high spatial heterogenity in the whole area, with high emission rates and concentrations in the source of the wüstebach catchment, despite the high water content.
- Hydroxylamine plays a crucial role for the prediction of soil N₂O emissions in the forest.
- The best model for predicting N₂O emissions in this forest includs HA, NO₃⁻, C, SWC, Mn and pH as predicting variables.

Thank you for your attention!