

Soil-atmosphere trace gas exchange the importance of lateral water fluxes and groundwater as controlling variables

Klaus Butterbach-Bahl, Ralf Kiese & Michael Dannenmann

Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Soils as sources and sinks for N₂O and CH₄

N ₂ O source ^a	Tg N ₂ O–N y ^{-1}	CH ₄ source ^b	Tg $CH_4 y^{-1}$
Natural sources			
Oceans	3.8 (1.8-5.8)	Oceans	4 (0.2–20)
Atmosphere	0.6 (0.3-1.2)	Termites	20 (2-22)
Soils	6.6 (3.3–9)	Wetlands	100 (92–232)
		Others ^c	21 (10.4-48.2)
Anthropogenic source Agriculture Biom Approx ₁₅ 509 Energy & industry C Others ^e	2.8 (1.7–4.8) % of N ₂ O ₂ fluxes a lirectly linked to 2.5 (0.9–4.1)	Rice cultivation nd 20% of CH ₄ flu: soil processes Ruminants Waste disposal	60 (25-9 <mark>0)</mark> xes are ₇₋₈ 0) 106 (46-174) 81 (65-100) 61 (40-100)
Total sources	17.7 (8.5-27.7)		503 (410-660)
Sinks Stratosphere Soils	12.5 (10–15) ^f 1.5–3 ^g	Stratosphere Soils Tropospheric OH	40 (32–48) 30 (15–45) 445 (360–530)
Total sinks	14 (11.5–18)		515 (430-600)

Estimates of global N_2O and CH_4 budgets (Tg y⁻¹).

Fowler et al. 2009, Atm. Environm. 43, 5193-5267

Criteria for site selection

- Representativeness
 - Climate
 - Vegetation
 - Land use and land management
 - What do we know about the importance of "landscape

inhomogenities" and edge effects for C/N/water/energy fluxes?

- How important is landscape water routing for biosphere-atmosphere N and C fluxes?
- •

Does this potentialy affect our view on landscape fluxes?

- Should we reconsider how we measure fluxes and how we scale fluxes?
 - Water routing
 - Vegetation

• .

Fragmented landscape – N fluxes

Fragmented landscape – N fluxes

Groffman et al., 2009 Biogeochemistry NH₃ N_r N, N_2 (N₂O/NO) NO₃ Shallow groundwate MWD SPD PD WD NO₂/ **Ground water** 0 DOC D denitrification e 30 potential increases p near the stream t 60 h 1. The water table comes closer to the surface. cm 90 2.Organic matter increases. Hydric soils 3. Dissolved oxygen decreases. 120 -4. Anaerobic conditions Redoximorphic features increase. Gleyed

WD: well drained; MWD: moderately well drained, SPD: somewhat poorly drained, VPD: very poorly drained

Small scale variability of soil water status and effects on N₂O fluxes

Jungkunst et al. 2003, J. Geophys. Res. 109, D07302

Groundwater level affects soil N₂O fluxes

Van Beek et al. 2010, Nutr. Cycl Agroecosys. 86, 331-340

Fragmented landscape – N fluxes

Spangenberg and Kölling 2004 Water, Air, and Soil Pollut.

Fragmented landscapes – C fluxes

C stock [kg m^-2]

Fragmented landscape – C fluxes

Robinson et al., 2009 Ecol Modelling

Fragmented landscape – C fluxes

Robinson et al., 2009 Ecol Modelling

Butterbach-Bahl – Landscape heterogeneity & C/N/H₂O fluxes

Small scale variability of soil water status and effects on CH₄ fluxes

Does consideration of water routing affect simulated water and carbon dynamics in terrestrial ecosystems? Hydrol. Earth Syst. Sci., 18, www.hydrol-earth-syst-sci.n

Hydrol. Earth Syst. Sci., 18, 1423–1437, 2014 www.hydrol-earth-syst-sci.net/18/1423/2014/ doi:10.5194/hess-18-1423-2014

G. Tang¹, T. Hwang², and S. M. Pradhanang³

What is the problem?

- Atmosphere-biosphere exchange of C and N is biased due to the selection of measuring sites
 - Avoiding complexity
 - Ignoring topography, water routing and deposition gradients
- Huge uncertainties with regard to fluxes and C/N stocks hampers to identify e.g. climate change feedbacks
 - New criteria for site selection
 - Additonal measurement approaches
 - Advanced modeling tools

Targeting landscapes to allow and down- and upscaling

Additonal measurement approaches

Spring

1d

2d

Towards landscape measurement and modeling approaches

Conclusions

- Water routing, fragmentation and edge effects are enhancing/ reducing fluxes and storage of C/N at landscape scales
- Effects remain unquantified
- New measuring/modeling strategies to assess effects and to reduce uncertainties

Conclusions

• Water routing, fragmentation and edge effects are

enhancing/ reducing fluxes and storage of C/N at

→advanced measuring
and modelling tools
for studying the
complex interactions
of water, C, and N at
landscape scales