

Leaf area (and soil) controls on boreal forest water, energy and carbon fluxes

Samuli Launiainen Gaby Katul, Pasi Kolari, Ari Laurén

TERENO International Conference, 1.10.2014 Bonn, Germany

APES (Atmosphere-Plant Exchange Simulator)

- Vertically resolved 1-D SVAT-model for (boreal) forests
- Elementary scale: a horizontally homogenous canopy layer
- Upscaling from leaf/shoot/forest floor processes to stand scale exchange

Upper boundary conditions (meteorology, 1/2 or 1 h time scale)

Vascular plant processes

- Sunlit / shaded foliage at each layer for each species
- Farquhar model (Farquhar et al., 1980)
- Variant of optimal stomatal closure theory (Medlyn et al., 2012)
- Leaf energy balance
- Feedback to soil water via macroscopic root uptake scheme (Volpe et al.,2013)
- Ψ_{root} (or Ψ_{leaf}) adjust stomatal slope g_1 and V_{cmax} & J_{max}

Bottom layer processes (mosses)

- Water & energy balance
- moss-air gas & energy exchange (Rice et al, 2001; Williams & Flanagan, 1996;1998)

SoilProfile

- 1-D Richards equation & Fourier equation
- Flexible boundary conditions incl. lateral flows
- Bulk soil respiration rate (auto+heterotrophic)

Microclimate

- Short-wave & long-wave radiation (Zhao & Qualls, 2005) with adaptations for clumped conifer canopies
- Multi-layer rainfall interception (Watanabe & Mizutani, 1996; Tanaka, 2002)
- 1st-order turbulence closure (momentum & scalar exchange)

Lower boundary conditions (at bottom of SoilProfile)

Soil-leaf feedbacks

Biochemical: $Vcmax(\Psi)$, $Jmax(\Psi)$

Stomatal: $g_1(\Psi), g_1(\theta), \dots$

Kellomäki & Wang (1996) Tree Phys.

Test case: Hyytiälä Scots pine stand

Parameterization for SMEAR II –site:

- Biomass & LAI measurements
- Soil water retention curves, hydraulic conductivity measured
- Species parameterization for: i) pine, ii) undergrowth, iii) field layer, iv) feather mosses
 - Literature, leaf & shoot gas exchange data
- Forcing: 1/2 h meteorology

Independent validation:

- EC-fluxes above and in sub-canopy
- Radiation measurements, scalar gradients
- Ground heat flux, soil T & water content profiles

Stand NEE in 1/2h timescale

Latent heat flux (i.e. ET)

Heat fluxes

Thinning

Most strongly altered microclimatic variables

Thinning impact on GPP

- Removal of 33% of pine LAI → -24% GPP
- ...but +15% if scaled per unit remaining pine LAI
- ... + ~25% if scaled per nr. trees remaining
- Observations: increase in annual volume growth >= 20% during first 5 yr after thinning
- Light competition
- Water resources
- Fertilization effect not considered

Rotation: Growth & management

- Stand growth & management: statistical growth model MOTTI (Hynynen et al., 2006),
- Understory & bottom layer vegetation: biomass equations (Muukkonen & Mäkipää, 2006 Bor. Env. Res)
- Southern Finland, a moist year (i.e. minimal soil controls), 2 month cumulative values (June-July)

MOTTI statistical forest growth model (Hynynen et al., 2006)

Conclusions

- Biophysical & physiological theory: most parameters can be measured directly
 - Validation for a dense spruce stand needed!
- Does forest structure matter?
 - GPP rather sensitive to LAI
 - ET more conservative; compensating processes
 - Interception the main factor between ET- LAI relationship in dense stands
- Do species matter role of functional biodiversity?
 - Photosynthetic parameters well known, speciesspecific WUE and drought response data are lacking

Thank you for your attention!

samuli.launiainen@metla.fi

metsä METLA TIETO hyvinvointi osaaminen

Kiitos