

Agriculture et Agroalimentaire Canada

Challenges in Scaling Up Flux Measurements of CO₂, CH₄ and N₂O from Terrestrial Ecosystems

R. Desjardins¹, D. Worth¹, M. Mauder², A. VanderZaag¹, E. Pattey¹, R. Srinivasan³, W. Smith¹, and B. Grant¹

¹ Science and Technology Branch, Agriculture and Agri-Food Canada

² Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology

³ National Research Council Canada, Aerospace Portfolio

Presented at the TERENO International Conference, Sept 29-Oct 3, 2014

Outline

- Review GHG flux measuring systems for a wide range of scales
- Present N₂O and CH₄ flux measurements from agroecosystems.
- Discuss the advantages and limitations of various techniques.

Flux measuring tools for a wide range of scales

Obtaining GHG emission estimates at regional and national scales

Carbon Tracker Flux Estimates using an Inverse Modeling Technique

Source: CarbonTracker CT2013, http://carbontracker.noaa.gov

Agricultural GHG Emissions Coupled processes in soil-plant atmosphere systems- S8

Greenhouse Gas Emission Estimates from Canadian Agroecosystems

Worth, D. E., Desjardins, R.L., MacDonald, D., McConkey, B.G., Dyer, J.A., and X.P.C. Verge 2014. The greenhouse gas indicator for agriculture AEI report Agriculture and Agri-Food Canada

Estimated Direct N₂O-N Emissions from Agriculture Soils in Canada Using DNDC (1970-1999)

Smith, W.N., B. Grant, R.L. Desjardins, R. Lemke, and C. Li. 2004. Estimates of the interannual variations of N₂O emissions from agricultural soils in Canada *Nutrient Cycling in Agroecosystems*. 68: 37-45.

Multi-scale estimation of N₂O emissions from agroecosystems

Pattey E., Edwards, G.C., Desjardins, R.L., Pennock, D., Smith W., Grant B., MacPherson, J.I., 2007. Tools for quantifying N₂O emissions from Agroecosystems. *Agric. Forest Meteorol*.142(2-4): 103-119. Scaling up chamber measurements of nitrous oxide emissions at the field scale in western Canada

Crop Weighted Chamber N₂O Flux

Wheat	(69.3 g N ₂ O-N ha ⁻¹ x 0.58)	Ve	
Canola	(31.8 g N ₂ O-N ha ⁻¹ x 0.19)		
Peas	(54.1 g N ₂ O-N ha⁻¹ x 0.17)		
Manured	(254. g N ₂ O-N ha⁻¹ x 0.01)		
			at the second

Total

58.7 g N₂O-N ha⁻¹

Pennock, D., Farrell, R., Desjardins R.L., Pattey, E., MacPherson, J. I., 2005. Upscaling chamber-based measurements of N₂O emissions at snowmelt. Can. J. Soil Sci. 85: 113-125.

Chamber/AC N₂O Flux Comparison

Pennock, D., Farrell, R., Desjardins R.L., Pattey, E., MacPherson, J. I., 2005. Upscaling chamber-based measurements of N₂O emissions at snowmelt. Can. J. Soil Sci. 85: 113-125.

Relaxed Eddy Accumulation (REA)

Inlet

- Alternate to eddy covariance technique to measure fluxes of trace gases for which fast-response analyzers are not operational
- Air samples from updrafts and downdrafts are collected in two separate reservoirs for later analysis
- In EA, sample flow rate is proportional to w; this requirement is 'relaxed' in REA (i.e., full flow into up or down reservoir depending on the direction of the vertical wind)

$$F_{\chi} = \overline{w'\chi'} = A\sigma_w (\chi_{Up} - \chi_{Down})$$

Desjardins, R.L., J.I. MacPherson and P.H. Schuepp. 2000. Aircraft-based flux sampling strategies. Encyclopedia of Analytical Chemistry. R.A. Meyers (Ed.) pp. 3573-3588. John Wiley & Sons Ltd. Chichester.

Pattey, E. Strachan, I.B., Desjardins, R.L., Edwards, G.C., Dow, D., and MacPherson, I.J. 2006. Application of a tunable diode laser to the measurement of CH_4 and N_2O fluxes from field to landscape scale using several micrometeorological techniques. *Agric. Forest Meteorol*.136: 222-236.

Measuring N₂O flux at a regional scale

Pattey E., Edwards, G.C., Desjardins, R.L., Pennock, D., Smith W., Grant B., MacPherson, J.I., 2007. Tools for quantifying N₂O emissions from Agroecosystems. *Agric. Forest Meteorol*.142(2-4): 103-119.

Regional N₂O fluxes during and right after snowmelt at the Eastern Canada study sites in 2001 using the REA technique

Each data point represents the average of 3 samples, collected during two consecutive 10 km flight legs (total flight distance for one data point is \approx 20 km)

Pattey E., Edwards, G.C., Desjardins, R.L., Pennock, D., Smith W., Grant B., MacPherson, J.I., 2007. Tools for quantifying N₂O emissions from Agroecosystems. *Agric. Forest Meteorol*.142(2-4): 103-119.

Multi-year comparison of N₂O emissions using aircraft-based systems and model estimates

Desjardins, R.L., Pattey, E., Smith, W.N., Worth, D., Grant, B., Srinivasan, R., MacPherson, J.I., and Mauder, M., 2010. Multiscale estimates of N₂O emissions from agricultural lands. *Agric. Forest Meteorol.*, 150: 817-824.

Comparing total measured and modeled N₂O flux estimates

Measured Modeled % difference (DNDC)

kg N₂O-N ha⁻¹ period⁻¹

In three out of the four measurement years, measured emissions exceeded modeled emissions by an average of 26%. In 2001, DNDC predicted a longer 'spring burst' than was measured, and total modeled emissions were 38% greater than measured emissions.

2003 1.87 1.44 +22

Measurements incorporate indirect emissions, whereas DNDC does not. In the IPCC methodology we assume that indirect emissions are in the range of 25 to 30% of total emissions.

Agricultural Sources of Methane in Canada in 2011

Enteric fermentation (digestion) by ruminant animals 18 Mt CO₂e per year

Management of animal manures 3 Mt CO₂e per year

Worth, D. E., Desjardins, R.L., MacDonald, D., McConkey, B.G., Dyer, J.A., and X.P.C. Verge 2014. The greenhouse gas indicator for agriculture AEI report. Agriculture and Agri-food Canada.

Methane emissions from farms

bLS inverse-dispersion technique

Boreal lasers and reflectors

Ultrasonic Anemometer

- CH₄ concentration and wind data synchronized
- WindTrax model

Flesch, T.K., Harper, L.A., Desjardins, R.L., Gao, Z., and Crenna, B.P. 2009. Multi-source emission determination using an inverse-dispersion technique. Boundary layer Meteorology.

CH₄ emissions from manure storage

From June 2013 - May 2014

Balde, H., VanderZaag, A.C., Desjardins R. L. 2014 .Measuring on-farm methane emissions (in preparation).

CH₄ emission estimates at a regional scale (2011)

The NRC Twin Otter

Instrumented nose boom

CH₄ Analyzer (G2301) and real-time display

1.967

in-flight REA sample collection & post-flight REA sample analysis using Picarro G1301

Location of the 7 transects flown at 150 m high

23

Water treatment facilities associated with increase in methane concentration

Waste treatment centres affect CH₄ concentration over large areas

Cai, X., Flesch, T.K., Desjardins, R.L. Worth, D.E. VanderZaag, A. Measurement and modeling of methane emissions from a large waste treatment facility. In preparation.

Summary

•Presented GHG flux measuring systems for a wide range of spatial and temporal scales- models are essential to integrate

•Presented some examples of comparisons between flux measuring techniques- There are some challenges but most of the differences observed are explainable

•Presented measurements of nitrous oxide emissions using an aircraftbased system. The combination of nitrous oxide emission estimates using aircraft- based flux measurements and the DNDC model provided an independent estimate of indirect emissions assumed in the IPCC methodology

•The aircraft-based methane flux measurements showed that methane emission inventory estimates for agricultural sources appear reasonable. It confirmed that some agricultural regions include other methane sources such as wetlands, biodigesters, waste treatment plants, etc. that can be quite large. This could put in question some of the sector-based methane emission estimates using atmospheric inverse modelling techniques.

Canada