KØBENHAVNS UNIVERSITET

Cosmic-ray neutron detection and modeling - estimating biomass and canopy interception

Mie Andreasen Department of Geosciences and Natural Ressource Management University of Copenhagen

Majken C. Looms, Karsten H. Jensen, Heye Bogena, Marek Zreda and Darin Desilets

Objective: To estimate intermediate scale biomass and canopy interception

Canopy interception:

- is the precipitation intercepted by the canopy of a tree/forest
- the interception loss can be important for the water balance
 - -Skjern River catchment: 16% forest and approx. 200 rainy days per year. Earlier studies estimate canopy interception loss to be around 40% of the total forest evaporation (Apr-Oct 2010)
- is traditionally measured on a small scale (e.g. through-fall stations)

Biomass:

- detection is important given interests in bioenergy, climate change, wood production etc.
- is traditionally estimated through e.g. tree surveys, satellite/images retrievals

Through-fall station

Cosmic-ray transport

High energy particles

Earth's protecting forces: -the magnetic fields -the atmosphere (*Moderation and absorption of the particles*)

Inverse relationship between the cosmic-ray neutron intensity and the hydrogen content (*Unique ability of hydrogen to moderate neutrons*)

Footprint

In the scale of <u>hectometers</u> in the air and <u>decimeters</u> in the ground

Hydrogen is pooled in the: -biomass -canopy interception -surface water -water vapour -soil moisture

-soil organic compounds etc.

Department of Geosciences and Natural Resource Management

Method

Field equipment

Cosmic-ray neutron probes:

- BARE probe; detects low-energy neutrons
- MOD probe; detects high-energy neutrons

Measurements

- multiple level measurements
- multiple neutron energy detection
- reference detection (above a water body)

Modeling, MCNPX

- an extended version of the Monte Carlo N-Particle Transport Code
- a radiation transport code for simulating nuclear processes

Department of Geosciences and Natural Resource Management

Gludsted Plantation

Forest characteristics:
1.atitude: 56° N and 50 m abs.
1.flat terrain and sandy soils
1.atiferous plantation primarily Norway spruce; 20 and 40 years
1.forest area: approx. 3500 ha
1.biomass: approx. 100 t/ha above ground dry biomass (from Lidar images, 2006/2007)
1.thick litter layer (5-7 cm)

Model conceptualization

- to setup a representative model

MCNPX model - steady state model

Energy bins

- thermal neutrons; 0 0.5 eV
- fast/epithermal neutrons; 0.5 10⁶ eV

A homogenous forest is simulated using average values for the forest and the soil:

- tree radius and height
- tree density
- forest biomass
- bulk density
- porosity
- carbon content etc.

Forest layer seen from above \rightarrow

from the side \rightarrow

Cosmic-ray neutron intensity profiles

Mismatch between the measured and modeled high-energy neutron intensity

Ringkøbing Fjord – Cadmium shield experiment

A cosmic-ray neutron probe shielded by cadmium foil will detect neutrons with energies > 0.5 eV

Reference measurements

conversion factor - relative count rates (model) to actual count rates
a chemical analysis of the fjord water is necessary!

Cadmium shield experiments

- Correction factors

Correction factors for BARE and MOD probes has been calculated based on cadmium field experiment conducted at different:

- land covers
- heights above the ground surface
- soil types (not included in the figure below)

A Cosmic-ray neutron intensity profile (incl. a cadmium shielded MOD probe) - Measurements (March 2013) vs. Model

A comparison of modeled and measured neutron intensities

- Preliminary

Biomass modeling

- the effect of changing biomass and soil moisture

Thank you for your attention

