

Climate reconstructions from tree-ring widths for the last 850 years and the need for new tree-ring proxies in northern Poland

I. Heinrich, A. Knorr, A. Bieber, K.-U. Heußner, T. Ważny, W. Beck, M. Slowinski, G. Helle, S. Simard, T. Scharnweber, A. Brauer

The facts

- Long chronologies used for temperature reconstructions are mainly from the high latitudes or high altitudes
- Long chronologies consist largely of tree-ring widths and density

• Long temperature reconstructions derived from temperate lowland trees growing well within their distributional limits are missing

The question

? How representative are our regional, global and hemispherical temperature reconstructions?

Northern Hemisphere temperature reconstructions. Graph: IPCC 2007

The task

Develop long climate reconstructions (especially temperature) for the temperate lowlands

Major challenges

 \Rightarrow Challenge 1: climate-growth relationships are less clear.

Major challenges

 \Rightarrow Challenge 2: trees well inside the distribution of the species are often young

and so

Itree-ring width series from young trees have relatively short segment lengths and thus are prone to suffer the "segment length curse".

General approach to

- Monitor growth and environmental controls of the three most common tree species (oak, beech, pine) => TERENO
- Develop and apply new methods (high resolution stable isotopes, CLSM and quantitative wood anatomy, CLIMTREG) for proxies with more significant or additional climate signals
- Working together with dendroarchaeologists is crucial to facilitate long chronologies in the temperate lowlands

Study site

• Samples of *Pinus sylvestris* and *Quercus* spp. from Northern Poland combined with archaeological material from the region

Pine chronology

- Various detrending techniques are applied including 'individual' (IND) and regional curve standardisations (RCS) => 54 Chronologies
- In IND only minor differences between std, res and ars, but larger

modifications in the RCS

- IND chronologies show only high frequency variances, whereas the RCS chronologies reveal also multidecadal trends.
- But some problems.

Climate response analysis

- Climate response analysis was conducted using nine 0.5 x 0.5 grid points from the CRU-data set (min, max, mean temp; precip; 1951-2009) and calculating simple Pearson's correlation coefficients.
- Best correlations within the IND group and residual chronologies.
- Strongest correlation coefficients (r = 0.54 0.61) with late winter temperatures (February/March).

Reconstruction of Feb-to-Mar max temperatures

- 4 possible reconstructions based on two IND and two RCS chronologies were established, using cross calibr / verif procedure by splitting the climate data and tree-ring widths into two similar time periods
- Grey area: ranges between highest and lowest values reconstructed for each year out of 4 possible reconstructions; black line: average reconstr.).
- Yellow and blue background define known warm and cold phases
- Red and blue lines represent 10 warmest (upper) and coldest (lower) 20year intervals as indicated by the reconstruction.

Oak chronology

• Orle Nature Reserve and East-Pommerania-Chronology

Climate response analysis

Climate response analysis was conducted using CLIMTREG program

Best correlation with summer precipitation (May-July)

	Gdansk	Koscierzyna		
EP std	11.05.cy - 14.07.cy / 0,619	09.05.cy - 12.07.cy / 0,516		
EP ars	11.05.cy - 14.07.cy / 0,634	09.05.cy - 04.07.cy / 0,486		
EP res	01.05.cy - 13.07.cy / 0,567	23.06.cy - 13.07.cy / 0,443		
EP std	07.09.cy - 24.10.cy / 0,418	08.09.cy - 30.09.cy / 0,437		
EP ars	08.09.cy - 28.09.cy / 0,403	04.09.cy - 25.09.cy / 0,440		
EP res	07. 09.cy - 20.10.cy / 0,412	08.09.cy - 10.10.cy / 0,501		

Reconstruction of May-to-Jul precipitation

- Comparison with Apr-Jun of Büntgen et al (France/Germany) confirms good quality of our reconstruction from Poland.
- Very similar decadal trends, especially in the first part.
- But : No long-term trends

Comparison of tree-ring width index (brown), minimum temperature (blue) and average lumen area (green)

- Tree-ring width must be detrended, but ALA not;
- Correlation of raw ALA and Min temp is r = 0.50;
- Correlation of tree ring index and Min temp is r = 0.27;
- The low-frequency trends of ALA and Min temp are very similar;
- ALA captures low-frequency temp trends and can exorcise the segment length curse;

Preliminary conclusions

- Oak and especially pine chronology encountered detrending problems;
- Oak TRW chronology is mainly sensitive to precipitation which has been reconstructed by Büntgen et al. extensively;

which means that we still need to retrieve from the series

- Low-frequency climate signals;
- Temperature signals rather than precipitation.

To achieve this, we are concentrating on other wood parameters:

• Stable isotopes and Quantitative wood anatomy

Climate signals derived from cell anatomy

Some large vessels of oaks versus

Quantitative wood anatomy Our new method

• Core samples can be used without further treatments

Confocal Laser Scanning Microscopy

• Example:

One image containing several merged images

Individual successive images (Magnification: 100x)

Cell structure measurements with WinCELL

Advantages of the new approach

- No thin sectioning necessary
- No staining necessary
- No geometrical distortions
- Easy and error-free merging
- Monochrome images optimise contrast between cell lumen and cell wall and thus facilitate easy analysis with WinCELL

Preliminary oak vessel chronologies

Climate response analysis - oaks

 Strongest correlation coefficients (r = 0.54 – 0.6) with autumn-to-winter temperatures (August - January).

Cells avg	Gdansk	Koscierzyna		
T min	29.11.py-19.01.cy / 0,576	29.11.py-19.01.cy / 0,585		
T mean	29.11.py-19.01.cy / 0,567	29.11.py-19.01.cy / 0,566		
T max	29.11.py-19.01.cy / 0,578	29.11.py-19.01.cy / 0,582		
T min	08.03.cy-09.05.cy / 0,415	25.02.cy-17.03.cy / 0,377		
T mean	06.03.cy-09.05.cy / 0,404	02.03.cy-09.05.cy / 0,372		
T max	06.03.cy-09.05.cy / 0,383	02.03.cy-11.05.cy / 0,362		

Cells max	Gdansk	Koscierzyna		
T min	03.09.py-25.12.py / 0,549	03.09.py-25.12.py / 0,500		
T mean	28.08.py-26.12.py / 0,604	28.08.py-26.12.py / 0,591		
T max	14.09.py-27.12.py / 0,576	14.09.py-27.12.py / 0,564		
T min	16.03.cy-05.04.cy / 0,327	15.03.cy-24.04.cy / 0,343		
T mean	14.03.cy-10.05.cy / 0,371	14.03.cy-11.05.cy / 0,379		
T max	14.03.cy-23.04.cy / 0,393	13.03.cy-12.05.cy / 0,369		

Preliminary pine tracheid chronologies

• Green curve: raw values; red curve: indices.

Climate response analysis - pines

- The same climate data.
- Strongest correlation coefficient (r = 0.66) with late winter-to-summer temperatures (February - June).

	Lumen width	Lumen length	Lumen area
Temperature	21. Jan10. Feb.: -0,47	13. Feb13. Jun.: -0,66	28. Mrz13. Jun.: -0,59
	21. Apr29. Mai: -0,46	8. Jan12. Feb.: -0,48	8. Jan12. Feb.: -0,43
Precipitation	25. Jul26. Aug.: 0,50	11. dez17. Mrz.: -0,41	10. Jan19. Mrz: -0,51
	24. aug20.dez.: -0,43	31. aug14.nov.: -0,35	24. aug17. okt.: -0,43

Conclusions

- Multi-centennial temperature and precipitation reconstructions for Poland based on Scots pine and oak TRW
- However, reconstructions lack low-frequency climate signals
- Wood anatomical parameters show excellent correlation patterns with temperature when using raw values
- New method utilizing CLSM will facilitate long chronologies of well replicated cell structure series which are sensitive to temperature
- Long temperature reconstructions for the temperate lowlands based on tracheid and vessel parameters are next!

Thank You!

- Liang, W.; Heinrich, I.; Helle, G.; Dorado Liñán, I.; Heinken, T. (2013): Applying CLSM to increment core surfaces for histometric analyses: A novel advance in quantitative wood anatomy. *Dendrochronologia* **31**, 2, 140-145.
- Liang, W.; Heinrich, I.; Simard, S.; Helle, G.; Dorado Liñán, I.; Heinken, T. (2013): Climate signals derived from cell anatomy of Scots pine in NE Germany. *Tree Physiology* **33**, 8, 833-844.

First temp reconstruction based on $\delta^{13}C$ in trees from Turkey

- Multi-decadal to centennial variability
- Above average: 1125 and 1480
- Temperature decreases: 1500 1700
- Temperature fluctuates: 1700 2006

Comparison with two NH temperature reconstructions (Mann et al. 2008, brown, and Moberg et al. 2005, green)

- Share common long-term trends
- But no temperature rise in Turkey during the 20th century

Tabelle 2: statistische Kennwerte der Orie- und der EP-Chronologie						
Chronologie	Anzahl	Mindest-	Höchst-	Ø-Alter	r	S
	Proben	alter	alter			
Orle	37	84	263	213	0,57	0,20
EP	242	44	278	154	0,51	0,20

and all all and a

Altersverteilung der Proben, grun dargestellt sind die Proben aus dem Orle Nature Reserve, rot dargestellt sind die Proben von Wazny (1990)

T 1

Reconstruction correlates significantly with winter NAO, but only marginally with other atmospheric circulation patterns likely affecting the winter climate in Europe.

11-year running correlations (1950-2010 AD) between reconstructed Feb-to-Mar max temperatures (black) and the North Atlantic Oscillation (NAO, Dec-Feb, blue), Scandinavia pattern (SCAND, Dec-Apr, orange) and East Atlantic-Western Russia (EA-WR, Jan-Mar, green) indices, respectively. Significant and mostly stable correlations are only observed with the winter NAO. The temporal stability disappears in the last 15 years.

POTSDAM